
Kernel Support Vector Machines and Convolutional

Neural Networks

Shihao Jiang∗†, Richard Hartley∗†, Basura Fernando∗†

∗Australian National University
†Australian Centre for Robotic Vision, Australia

Abstract—Convolutional Neural Networks (CNN) have
achieved great success in various computer vision tasks due to
their strong ability in feature extraction. The trend of develop-
ment of CNN architectures is to increase their depth so as to
increase their feature extraction ability. Kernel Support Vector
Machines (SVM), on the other hand, are known to give optimal
separating surfaces by their ability to automatically select support
vectors and perform classification in higher dimensional spaces.
We investigate the idea of combining the two such that best of
both worlds can be achieved and a more compact model can
perform as well as deeper CNNs. In the past, attempts have been
made to use CNNs to extract features from images and then
classify with a kernel SVM, but this process was performed in
two separate steps. In this paper, we propose one single model
where a CNN and a kernel SVM are integrated together and
can be trained end-to-end. In particular, we propose a fully-
differentiable Radial Basis Function (RBF) layer, where it can
be seamless adapted to a CNN environment and forms a better
classifier compared to the normal linear classifier. Due to end-to-
end training, our approach allows the initial layers of the CNN
to extract features more adapted to the kernel SVM classifier.
Our experiments demonstrate that the hybrid CNN-kSVM model
gives superior results to a plain CNN model, and also performs
better than the method where feature extraction and classification
are performed in separate stages, by a CNN and a kernel SVM
respectively.

I. INTRODUCTION

The trend of the development of deep learning, is making
networks deeper by adding more layers to the architecture.
The argument is that deeper neural networks have larger
capacity and can extract more abstract features from the input
data. Thus, they often give better performance than shallower
networks. This is evidenced by the top-5 error on ImageNet
validation set of ResNet models. ResNet models with layers
50, 101 and 152 give the top-5 error rates (%) 5.25, 4.60 and
4.49 respectively [1].

However, the trend of going deep in deep networks is not
without its drawbacks. One obvious problem is that as the
architecture becomes deeper, the demand for computational
resources also increases accordingly, which includes both
memory and computation time. ResNet-50, ResNet-101 and
ResNet-152 have 25.5 million, 44.5 million and 60.3 million
parameters respectively. Also, longer training time slows down
the progress for research and development.

The reason for adding layers in a deep network, is to
enhance the feature extraction ability of a network, such
that the extracted features can be linearly separable and thus
correctly classified in classification problems. Since a CNN can
be viewed as an integration of feature extractors and classifiers,

one would ask whether improving the classifier in a network
could achieve the same performance as adding more layers
to the network, or improving performance without adding a
significant number of parameters.

To this end, we revisit a more traditional approach, Support
Vector Machines (SVMs) [2], in particular kernel SVMs, and
adapt them into a CNN environment. The motivation behind
this work is that although CNNs have proven effective in
feature extraction due to their multi-layer structure, they are not
always optimal for classification. The linear classifier of a CNN
can potentially be replaced by a classifier able to separate more
complex surfaces, thus improve classification accuracy. This
leads us to investigate kernel SVMs, which were the standard
method of solving classification problems before CNN became
popular. Kernel SVMs compute optimal separating surfaces
with a maximal margin criterion and are able to classify data
not linearly separable. We are particularly interested in the
interaction of kernel SVMs and CNNs and see whether the
hybrid architecture can improve performance.

In this paper, we propose a fusion CNN-kSVM model, with
CNN as the feature extractor and Gaussian-kernel SVM as the
classifier, replacing the linear classifier of an original CNN.
Previous works [3], [4] also investigated the idea of using
a CNN to extract features and classify with an SVM, and
claimed to achieve better results than a CNN softmax clas-
sifier. However, two separate models were built and optimized
separately. In our case, we combine a CNN and a kernel SVM
into a single model. In particular, our model consists of a fully-
differentiable Gaussian Radial Basis Function (RBF) layer,
which combined with a fully-connected layer, forms a kernel
SVM classifier. The kernel SVM classifier can be optimized
together with the CNN using gradient descent methods. To
our knowledge, this is the first time an SVM is embedded in
a CNN architecture and the two are optimized together.

We have conducted experiments on both binary classifi-
cation problems and multi-class classification problems. For
binary classification, we use a dataset containing dog and cat
images, with 20000 images for training and 4000 images for
testing. We demonstrate that the hybrid CNN-kSVM model
yields significant performance improvement compared with a
stand-alone CNN, without significantly increasing the number
of parameters. We also compare with using a libSVM [5] to
classify CNN features, the same as [4], and have discovered
that our approach yields better results. For multi-class classi-
fication, we use the CIFAR-10 dataset [6]. We have tested our
kernel SVM classifier based on a small CNN model and a deep
CNN model, and have found improvements in classification
results in both architectures.



II. RELATED WORKS

A. Support Vector Machines

Support Vector Machines developed by Cortes and Vapnik
[7] are one of the most robust classifiers due to their ability to
find optimal separating planes with maximum margin. Kernel
SVMs can also implicitly map their inputs to very high
dimensional feature spaces and perform linear classification
in feature space, thus performing non-linear classification in
input spaces.

In the case of a CNN, the final fully-connected layer
used for classification is no different to a linear SVM, except
optimized with gradient-based approaches. Therefore, various
approaches have attempted the idea of combining CNNs and
SVMs.

B. Combination of CNNs and SVMs

Various papers have explored the idea of combining CNNs
and SVMs to take advantage of the two different models.

Huang et al. [3] first implemented the idea of combining
a CNN with an SVM in 2006, when CNN was not the major
model used to solve image classification problems. In [3],
a convolutional net was first trained in a supervised way
as a feature extractor. The features were extracted from the
final layer of the network and were used as input to train a
Gaussian SVM. In our approach, we use the extracted features
to initialize Gaussian centres and train the hybrid model end-
to-end with gradient descent. The paper also mentioned the
drawback for SVMs, that is they are not suitable for problems
with large training set. Our on-line method of training does
not suffer from this problem.

Tang [8] proposed the idea of replacing the softmax layer
with a linear SVM and training the CNN with a margin-
based loss instead of cross-entropy loss. The loss function the
author used was an L2-SVM instead of the standard hinge
loss. They demonstrated superior performance on MNIST,
CIFAR-10 datasets and a Kaggle competition compared to
using a softmax top layer. This work changed the loss function
rather than the network structure, whereas in our approach we
modified the linear classifier into a Gaussian-kernel classifier.

Niu et al. [4] implemented the idea of combining CNN and
kernel SVM to solve handwritten digits recognition problem.
The idea was largely similar to [3]. Firstly an original CNN
was trained until the training process converged. Then they
replaced the output layer with an SVM with RBF kernel
and trained the SVM using CNN feature vectors. They used
libSVM software to build their SVM model. After the SVM
classifier is well trained, it performs the recognition task and
makes decisions based on features extracted by the CNN.
Elleuch et al. applied CNN and SVM approaches to solve
the more challenging Arabic Handwritten Recognition. The
network structure was similar to [4] except that dropout was
added to give further accuracy improvement.

Shi et al. [9] incorporated Radial Basis Function (RBF) in a
new setting. [9] solved action anticipation problem by using an
RNN to extract features and then classifying with a multilayer
perceptron with RBF kernels. Even though this paper solved
a different problem, it demonstrated the advantage of RBF
kernels in representing complex feature mappings.

In our implementation, we build an end-to-end model such
that a CNN and SVM are combined together and optimized
simultaneously. CNN feature vectors are used to initialize
Gaussian-kernel SVM. Then the model is trained end-to-end
such that the initial CNN layers are optimized for the kernel
SVM classification layer.

III. METHOD

We first highlight the essential similarity between a linear
SVM and the final fully-connected layer of a CNN. Then we
introduce the construction of a kernel SVM and how it can be
incorporated into a CNN. We then explain our motivation of
combining a kernel SVM with a CNN and present our network
architecture.

A. Linear SVM

We formulate the idea of SVMs in a way that is related to
neural networks.

A linear SVM takes a vector x = (x1, x2, . . . , xn) ∈ IRn

as input, and outputs a value y ∈ IR, defined by

y = 〈w,x〉+ b, (1)

where a vector w ∈ IRn and offset b ∈ IR are learnt during
a training process. This provides a classifier for input x; the
vector x is assigned to class 1 or −1 depending on whether
y > 0 or y < 0.

As such, a linear SVM is identical to a final “fully-
connected” layer in a CNN, which performs classification. A
CNN can thus be viewed as two parts: one part performs
feature extraction, which implements a non-linear function
Φ : IRm → IRn (where m is the dimension of the input of the
CNN); the second part is the final fully-connected layer, which
is essentially a linear SVM and is used for classification.

Commonly, a stand-alone SVM is trained using convex
optimization methods in order to find a maximum margin
hyperplane, whereas in the case of a CNN, the linear SVM
is trained together with the non-linear function Φ, often with
gradient-based methods.

Figure 1 illustrates how a CNN can be viewed as a non-
linear function Φ and a linear SVM.

B. Kernel SVM

A kernel SVM can be described in a similar fashion. An
imagined non-linear function Φ : IRn → H is applied on
the input to transform it to a higher dimensional space H,
possibly inifinite-dimensional. H is a Hilbert space, where
inner products can be taken. The introduction of the mapping
Φ is to highlight the essential similarity between kernel SVMs
and linear SVMs. Given an input x ∈ IRn, we may carry out
two-label classification by forming the expression

y = 〈w,Φ(x)〉H + b, (2)

where w ∈ H and b ∈ IR.

In a kernel SVM, one need only define a suitable kernel
K, instead of explicitly performing the mapping Φ and taking
inner products in Hilbert space. This is known as the “kernel



Fig. 1: An example CNN which can be viewed as a non-linear function Φ and a linear SVM classifier. During training, the
output is fed to a loss layer where it is compared with ground truth.

trick”. The kernel function is related to the non-linear mapping
Φ through the formula

K(x1,x2) = 〈Φ(x1),Φ(x2)〉H. (3)

One commonly used kernel is the Gaussian Radial Basis
Function (RBF) kernel, defined by

K(x1,x2) = exp(−λ‖x1 − x2‖
2). (4)

We make the assumption that w lies in the span of Φ(µi), for
some values µi ∈ IRn. Thus, one may write

w =

k
∑

i=1

aiΦ(µi),

where ai ∈ IR are the scalars. The µi are referred to as the
support vectors. With this assumption, we may write

y = 〈w,Φ(x)〉H + b

=

〈 k
∑

i=1

aiΦ(µi),Φ(x)

〉

H

+ b

=

k
∑

i=1

ai〈Φ(µi),Φ(x)〉H + b

=
k

∑

i=1

aiK(µi,x) + b.

In the case of the RBF kernel, this becomes

y(x) =

k
∑

i=1

ai exp(−λ‖x− µi‖
2) + b. (5)

Compared with Equation (1), which is classifying input with a
hyperplane, we apply multiple Gaussian functions to approxi-
mate the separating function.

In normal practice with SVMs, the Gaussian centres, µi are
chosen from among the training samples {xj}, but we propose
relaxing this restriction so that the µi are trainable parameters.

It is easy to see that a kernel SVM is a superior classifier
compared with a linear SVM. Linear SVMs can only classify
data by a hyperplane, while kernel SVMs can classify data
based on more complex surfaces. In the case of a Gaussian
RBF kernel, by adding a sufficient number of Gaussians,

one can clearly describe the data separation between differ-
ent classes and thus improve classification accuracy. Addi-
tionally, a linear SVM can be regarded as a special case
of an RBF-kernel SVM using two Gaussians. For example,
y = exp(−‖x − x1‖

2) − exp(−‖x − x2‖
2) will be positive

for points closer to x1 and negative for points closer to x2.
This creates a hyperplane placed mid-way between x1 and x2.
This is demonstrated in the surface plot and contour plot in
Figure 2. Thus, a kernel SVM with two support vectors should
not perform worse than a linear SVM. By adding more support
vectors, we are able to generate a more complex separating
surface and thus hope to achieve better performance. This is
demonstrated in Figure 3.

The approach of placing Gaussians in the Euclidean space
is similar to the idea of Parzen windows [10], in which
distributions are approximated by summing normal Gaussian
distributions placed at locations within the support region
of the distribution. In the method suggested here by RBF-
kernel SVMs, approximations to the support regions of the two
classes are formed by summing Gaussians placed within those
regions, and classifying test points according to the values
of the approximation functions to the two different support
regions. Thus, RBF-kernel SVMs may be understood in this
simple way, without the machinery of Hilbert spaces, or the
positive-definiteness of the kernel. In fact, the approach applies
equally well to any of the ”kernel” used to approximate a
function.

C. Network Architecture for Binary Classification

We explain our CNN-kSVM model architecture for binary
classification here. We employ a CNN architecture with four
convolution layers and one fully-connected layer. The first two
convolution layers have kernel size 5 × 5 and zero-padding
2. The third convolution layer has kernel size 3 × 3 and
zero-padding 1 and the fourth convolution layer has kernel
size 7 × 7. All convolution layers have stride 1. Each of the
convolution layers is followed by a rectified linear unit (ReLU)
activation function. Three max pooling layers are added after
convolutions to subsample feature maps. The first two max
pooling layers have kernel size 4 × 4 and stride 4 and the
third max pooling layer has kernel size 2×2 and stride 2. The
architecture is demonstrated in Figure 4.

The kernel SVM classifier implements a Gaussian RBF



-2

0

-0.5

2

0

2 1.5 1 0.5 0 -0.5 -1 -1.5 -2

0.5

(a) Surface plot of an SVM classifier composed by two Gaussians with
weight −1 and 1. Equivalent to a binary linear classifier.

-0.4

-0
.3

-0
.3

-0.2

-0.2

-0
.1

-0.1

-0
.1

0
0

0
.1

0.1

0
.1 0.2

0.2

0
.3

0
.3

0.4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) Contour plot of an SVM classifier composed by two Gaussians with
weight −1 and 1. Level 0 indicates the separating plane, in this case, a
line in IR

2.

Fig. 2: Kernel SVM classifier formed by 2 Gaussian functions with weights −1 and 1

5

0-8

-6

-4

-2

0

2

3

4

6

8

2

10

1 0 -1 -5-2 -3

(a) Surface plot of an SVM classifier composed by five Gaussians.

-6
-5

-4

-3

-3

-2

-2

-2

-1

-1

-1

-1

-1

0

0

0

0

0

0

0

11

1

1

1

1

1

2

2

2

2

2

3

3

3

3

4

4

55

6 7 8

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b) Contour plot of an SVM classifier composed by five Gaussians.
Level 0 indicates the separating plane. One can see that this classifier
is able to separate data that is not linearly-separable.

Fig. 3: Kernel SVM classifier formed by 5 Gaussian functions

function. The classifier consists of an RBF layer and a fully-
connected layer; which together can be represented by

ŷ(x) =

N
∑

i=1

ai exp(−
‖x− µi‖

2

σ2

i

) + b. (6)

In Equation 6, the vector x ∈ IR500 is the input for the
classifier and ŷ ∈ IR is the predicted output scalar. The
parameters are µi, σi, ai and b. The µi ∈ IR500 represent

Gaussian means and σi ∈ IR represent the standard deviations
for Gaussian functions; both are in the RBF layer and learned
through training. There are N Gaussians in the RBF layer
and the 500-dimensional input x is duplicated N times for N
Gaussians. The parameters ai and b represent weights and bias
of the fully-connected layer and perform a linear combination
on the outputs of the Gaussians; they are also learned through
training. The complete model is illustrated in Figure 5.



Fig. 4: Architecture of the original CNN model in binary classification

Fig. 5: Architecture of the proposed model combining CNN and RBF-kernel SVM. In our experiments, N = 2 or N = 20.

IV. EXPERIMENTS

A. Binary Classification

We first evaluate our CNN-kSVM model on a binary
classification problem. We use a binary dataset containing dog
and cat images. The dataset contains 24, 000 images, with
12, 000 cats and 12, 000 dogs. Sample images are shown in
Figure 6. We separate the dataset such that 20, 000 images are
used for training and 4, 000 images are used for testing, with
equal number of dog and cat images in both. Images were
resized to 224×224 when training the network. We label cats
as 0 and dogs as 1.

We first train a CNN from scratch with architecture shown
in Figure 4, which achieves test set performance 91.625%. The
CNN is trained with data augmentation including random crop
and random horizontal flip. The trained CNN is our baseline
model. We then investigate how a kernel SVM classifier can
improve the performance. We pass training images through
the trained CNN and collect 20, 000 500-dimensional feature
vectors.

1) LibSVM: As a baseline, following [4]: we pass the
collected 500-dimensional feature vector into a RBF kernel
SVM classifier. LibSVM [5] is used to build the classifier.
We use grid search to determine C and γ, which are two
parameters for RBF kernel and the best classification result
obtained is 92.05%. We also try initializing the RBF layer
with support vectors generated by LibSVM and then training

Fig. 6: Sample images of the dog and cat dataset, partly taken
from Kaggle dataset.

the hybrid model but do not observe significant improvement.

2) N = 2: We first initialize a kernel SVM classifier with
2 Gaussians. These two Gaussians are initialized such that
they form a separating hyperplane equivalent to the linear



classifier (fully connected layer in CNN). The means of the
two Gaussians are selected in the following manner. We first
compute the mean feature vector for each class. Then we find
two Gaussian means that are closest to the two mean feature
vectors and are also symmetrical with respect to the hyperplane
represented by the linear classifier. This initialization ensures
that the CNN-kSVM model gives the exactly same classifica-
tion accuracy as the original CNN. We then train this model
and have obtained 92.85% classification accuracy.

3) N = 20: We then add multiple Gaussians for each class.
The Gaussian centres are also initialized such that they are
symmetrical with respect to the separating hyperplane and also
have a good coverage of the data cloud. We train this model
and achieve a classification accuracy of 93.2%.

TABLE I: Test Accuracy for Different Models

Model Test Accuracy

Baseline CNN 91.625%

LibSVM [4] 92.05%

CNN with RBF layer, N=2 92.85%

CNN with RBF layer, N=20 93.2%

Test results are shown in Table I. We can see that the
hybrid CNN-kSVM model is able to increase classification
accuracy from 91.625% to 93.2% with N = 20. This is
18.8% decrease in error rate from 8.375% to 6.8%, which is a
significant improvement when only increasing 0.38% number
of parameters. The number of parameters for each model is
shown in Table II, and we can see that there is not much
difference in them.

TABLE II: Model Parameters for Different Models

Model Parameters

Baseline CNN 2522671

CNN with RBF layer, N=2 2523175

CNN with RBF layer, N=20 2532211

Also, given the size of the test set 4000, the result 93.2% is
better than 91.625% at an significance level of 99.987%. The
result given by [4], which is an improvement from 91.625% to
92.05%, has a significance level of 99.66%. This probability
shows that this improvement is not due to chances.

B. Multi-class Classification

We also apply our model on a multi-class classification
problem. The dataset which we evaluate our model on is
CIFAR-10 [6]. The CIFAR-10 dataset contains 60,000 32×32
colour images in 10 classes, with 6,000 images in each class.
The training set contains 50,000 images and the test set
contains 10,000 images.

We have experimented on two CNN architectures: one is a
small model, as shown in Table III; the other is a deep CNN

model, which is DenseNet [11]. In our small CNN model in
Table III, each 5×5 convolution has stride 1 and zero-padding
2. The pooling layers have stride 2 and zero-padding (0,1,0,1).

TABLE III: Small CNN Model

Conv 5×5, 32, Max Pooling 3×3 stride=2, ReLU

Conv 5×5, 32, ReLU, Avg Pooling 3×3 stride=2

Conv 5×5, 64, ReLU, Avg Pooling 3×3 stride=2

Conv 4×4, 64, ReLU

Fully Connected, 10

Similar to the architecture shown in Figure 5, we also
extract features before the final fully-connected layer of a
CNN, then pass them into our kernel SVM classifier, which
contains an RBF layer with N Gaussian functions and a fully-
connected layer.

1) Small CNN: For the small CNN model, we first train
the CNN model and the test set accuracy is 80.65%. Then
following the baseline [4], we extract 64-dimensional feature
vectors before fully-connected layer and classify with RBF-
kernel SVM using libSVM software. Surprising, this does not
give better results than original CNN.

In our CNN-kSVM model, we first set N = 10 by having
one Gaussian function per class. The mean of each Gaussian
is initialized by computing the mean of the 64-dimensional
feature vectors for that particular class. After training, this
gives the same results as the original CNN. Then we add
more Gaussian functions for each class, to have a better
representation of the feature space. We perform PCA on the
64-dimensional feature vectors for each class to obtain the
first and second principal components. We then place the
Gaussian means along the axis of the first and second principal
components. When we have 2 Gaussian functions for each
class, i.e. N = 20, the test accuracy is 80.95%. When we
have 5 Gaussian functions for each class, i.e. N = 50, the test
accuracy is 81.65%, which gives us 1% improvements from
the baseline CNN. The complete results are shown in Table IV.

TABLE IV: Test Accuracy for CIFAR-10, Small CNN

Model Test Accuracy

Baseline CNN 80.65%

LibSVM [4] 80.62%

CNN with RBF layer, N=10 80.65%

CNN with RBF layer, N=20 80.95%

CNN with RBF layer, N=50 81.65%

2) DenseNet: We also test our RBF layer on a deeper CNN,
to investigate whether our kernel SVM model will be beneficial
to a network that already gives high classification accuracy
on test set. Here, we use the basic DenseNet model with 40
layers. We train DenseNet-40 on CIFAR-10 and the test set
accuracy was 94.58%. We then insert our RBF layer to form



the DenseNet with RBF layer architecture, where we place 200
Gaussian functions in total, N = 200. This gives us a test set
accuracy of 94.8%, which is a 4% decrease in error rate, from
5.42% to 5.2%. The result is shown in Table V.

TABLE V: Test Accuracy for CIFAR-10, DenseNet

Model Test Accuracy

DenseNet 94.58%

DenseNet with RBF, N=200 94.8%

V. CONCLUSION

In this paper, a new hybrid CNN-kSVM model has been
proposed. In particular, we leverage the feature extraction
capability of CNNs and the optimal classification performance
of kernel SVMs and demonstrate that combining two models
can give superior performance to a single CNN. Moreover,
rather performing feature extraction and classification in two
different steps like in previous works, we are able to combine
CNN and kernel SVM into a single model and perform end-
to-end training. Various experiment results have demonstrated
that this model is able to improve the performance of an
original CNN, in both binary classification and mutil-class
classification problems.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770–778.

[2] B. Schölkopf and A. J. Smola, Learning with kernels: support vector

machines, regularization, optimization, and beyond. MIT press, 2002.

[3] F. J. Huang and Y. LeCun, “Large-scale learning with svm and
convolutional for generic object categorization,” in Computer Vision

and Pattern Recognition, 2006 IEEE Computer Society Conference on,
vol. 1. IEEE, 2006, pp. 284–291.

[4] X.-X. Niu and C. Y. Suen, “A novel hybrid cnn–svm classifier for
recognizing handwritten digits,” Pattern Recognition, vol. 45, no. 4,
pp. 1318–1325, 2012.

[5] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM transactions on intelligent systems and technology

(TIST), vol. 2, no. 3, p. 27, 2011.

[6] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Citeseer, Tech. Rep., 2009.

[7] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[8] Y. Tang, “Deep learning using linear support vector machines,” arXiv

preprint arXiv:1306.0239, 2013.

[9] Y. Shi, B. Fernando, and R. Hartley, “Action anticipation with rbf
kernelized feature mapping rnn,” in ECCV, 2018.

[10] M. Rosenblatt, “Remarks on some nonparametric estimates of a density
function,” The Annals of Mathematical Statistics, pp. 832–837, 1956.

[11] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, vol. 1, no. 2, 2017,
p. 3.


